
ALUBERI - A DESIGN PATTERN FRAMEWORK

OCTAVIAN PAUL ROTARU MARIAN DOBRE

University Politehnica Bucharest University Politehnica Bucharest
Octavian.Rotaru@ACM.org Marian.Dobre@Amdocs.com

ABSTRACT

Design patterns are an experience
encapsulation mechanism, such that good designs
can be applied again in similar situations. Design
patterns are also a common vocabulary that
facilitates and raises the abstraction level of the
communication between designers and developers of
object-oriented software. The availability of a tool
for automatically generating the code of design
patterns will be beneficial both for novice and
experienced developers, helping them to overcome
the inherent difficulties of a design pattern
implementation.

This paper describes the architecture of
Aluberi, a design pattern generation framework
composed of a stand-alone application, a Visual
Studio add-in, a pattern repository and a pattern
template library. Named after the Great Spirit of the
Arawak tribe, Aluberi provides two modalities of
pattern generation: a complete customized
generation based on a pattern skeleton taken from
the pattern repository and a light generation, based
on the instantiation of the pattern template classes
from the pattern template library.

Also, the paper presents a case study based on
the Pluggable Factory, indicating that the non-
intrusive design pattern implementations can be
generalized using templates into a pattern template
library.

Key words: code generation, design patterns, design
pattern generation framework, pattern repository,
pattern template, pluggable factory

1. DESIGN PATTERNS – AN
INTRODUCTION

Patterns are solutions based on experience to
recurrent problems, describing best practices and
good design. They are ways to capture experience
and make it available for others.

The origin of patterns lies on Christopher
Alexander’s work on architectural design [2].
Christopher Alexander considers that “each pattern
describes a problem which occurs over and over
again in our environment, and then describes the core
of the solution to that problem in such a way that you
can use this solution a million times over, without
ever doing it the same way twice” [2].

Even if Alexander was referring to patterns in
architecture and urbanism, his view is also valid for
object-oriented design.

Experience is an intangible but for sure
valuable commodity, which distinguishes a novice
from an expert. People acquire it slowly, through
hard work and perseverance, and communicating it
to the other is a challenge. Design patterns are a
promising step towards capturing and
communicating expertise in building object-oriented
software. [5]

The “Design Patterns: Elements of reusable
Object-Oriented Software” book of Erich Gamma,
Richard Helm, Ralph Johnson and John Vlissidess,
also known as The Gang of Four book [4], had a
decisive role in the popularization of the patterns in
software engineering. It presents a catalog of 23
software design patterns taken from numerous
object-oriented systems.

Design patterns provide a common design
lexicon, and communicate both the structure of a
design and the reasoning behind it. [10] They allow
people to understand object-oriented software
applications in terms of stylized relationships
between program entities. A pattern identifies the
roles of the participating entities, the responsibilities
of each participant and the connections between
them. The use of patterns also raises the abstraction
level at which designers and developers
communicate, by providing a high-level shared
vocabulary of solutions.

2. INTENT

Design patterns are to great extent work-around
solutions for deficiencies in programming languages
and technologies. For example, the Visitor pattern
was created to overcome the lack of support for
double-dispatch in nowadays object-oriented
programming languages (OOPL). Design patterns
offer a way to improve OOPL by reusing proven
solution and to tame complexity. They resolve
“misfits”, as Christopher Alexander calls them [1, 2,
3].

Even if the design patterns popularity is
increasing, there is still lack of support for patterns in
the development environments.

 This paper addresses the problem of automatic
generation of code for design patterns. A design
pattern describes a solution which will most of the
times lead to similar implementations. For most of
the developers it becomes a burden to write the same
design pattern skeleton over and over again, and then
add to it only minimal customization.

We believe that every design pattern has an
intrinsic skeleton or meta-pattern in it that can be
automatically generated in the same way the class
wizard of Microsoft Visual Studio generates the
skeleton of an application or of a dialog or view
class.

Our aim is to create an extension for the
development environment able to generate skeletons
of design patterns and a desktop application able to
visualize, edit, create, generate and export design
patterns.

The main advantage of this is the uniformity of
the design pattern implementations that will provide
an easy way of pattern recognition in the code.

3. CASE STUDY

If every pattern has an intrinsic skeleton then a
wizard or an automated tool can be used to generate
the pattern skeletons, or the patterns inside patterns.

Presuming that the above statement is true,
how easy it is to detect the pattern skeletons and how
useful is to automate its creation? Is the pattern
skeleton generic enough as to be able to automate it?

Each pattern must be adapted every time when
applying it. The general context remains the same,
but the pattern should be adapted to be specific to the
sub-context.

We will utilize one of the most frequently used
patterns as example for detecting the pattern “heart”
and eventually answering the questions above.

Dynamic Pluggable Factory is the most generic
type of factory and also the most powerful creational
design pattern and therefore it will be used as
example in our case study. Its scope is broader than
the scope of the Factory Method and Abstract
Factory. Vlissides [8, 9] considers the Pluggable
Factory as applicable when Abstract Factory is
applicable and any of the following are true:

• Products may vary independently during the
factory’s lifetime.

• Ad-hoc parameterization techniques are not
flexible or extensible enough.

• The avoidance of the ConcreteFactory
subclasses proliferation is required.

The Pluggable Factory has one creation method
that is able to create all necessary artifacts based on
artifact’s key. The factory searches in the pool for
the creator that corresponds to the respective key and
invokes it. The creator will return the abstract base
type of the artifact. The creators register with the
factory during their construction and un-register at
destruction time. Figure 1 presents the object model
of the Pluggable Factory pattern.

Figure 1. Pluggable Factory – Object Model

Apart from the artifacts that it instantiates, the
Pluggable Factory pattern has two major players:
ArtifactFactory and Creator. We will discuss about
their implementations in order to determine their
skeletons and see how generative they are.

A typical implementation of the Factory class
of a Pluggable Factory will look like:

// Factory implementation
class ArtifactFactory {
 // static member for myself (singleton)
 static ArtifactFactory m_myself;

 // creators pool
 std::map <string, Creator *> m_pool;

 // private default constructor
 ArtifactFactory () {}
public:
 static ArtifactFactory * Instance()
 { return &m_myself; }

 // register creator with the factory
 void Add (string key, Creator * c)
 { m_pool[key] = c;}

 // unregister
 void Remove (string key)
 {
 if (m_pool.find(key) != m_pool.end())
 m_pool.erase(key);
 }

 // create artifact
 Artifact * Create (string key)
 {
 if (m_pool.find(key) != m_pool.end())
 return m_pool[key]->Create();
 else return NULL;
 }
};

The family information specified in the object

model presented in Figure 1 was removed for
simplicity reasons. The Pluggable Factory
implementation presented above constructs only
objects from one family and its key is a string.

The implementation of the ArtifactFactory
class presented above has only two elements that can
vary: the type of the key (italic in the code example)
and the Artifact (underlined in the code example).
The Creator can be considered as being the same
because it can be generated every time with same
name.

Reintroducing the family information that was
removed earlier brings the total number of variable
parameters to three.

A typical implementation of the Creator as a
self-registering object is the following:

struct Creator
{
 string m_code;
 virtual Artifact* Create() const = 0;

 Creator(string & code)
 : m_code(code)

 {
ArtifactFactory::instance()->Add(
 code, this);

 }

 ~Creator()
 {
 ArtifactFactory::instance()->Remove(
 m_code);
 }
};

template <class SpecArtifact>
struct SpecializedCreator : public Creator
{
 virtual Artifact * Create() const
 {
 return new SpecArtifact;
 }

 SpecializedCreator(
 string code)
 : Creator(code) {}
};

The implementation of the Creator presented

above has the same variables as the implementation
of the Factory.

To conclude the discussion, the Pluggable
Factory design pattern can be generated using an
automated tool, its variable parameters being:

• Family type
• Key type
• Artifact base type

The registration of <key, Creator> pairs to the
factory by instantiation of the SpecializedCreator can
also be generated. The extra parameter that must be
specified by the user is a list of <code, Concrete
Artifact> pairs. However, the user can manually do
the registration at the factory, since it requires only
the construction of a SpecializedCreator object,
persistent as long as the factory is necessary.

A template is a parameterized class. The
Pluggable Factory design pattern can also be
generalized using templates. In this way the amount
of code generated for every specific implementation
will drastically decrease. The pattern generation
process will only create an instance of the pattern
template, based on the instantiation parameters
supplied by user.

The Pluggable Factory design pattern
implementation can be generalized using templates
in the following way:

// Creator class
template < class KEY, class ARTIFACT>
struct Creator {
 KEY m_code;

 virtual ARTIFACT * Create() const = 0;

 Creator(KEY & code)
 : m_code(code)
 {
 ArtifactFactory::instance()->Add(
 code, this);
 }

 ~Creator()
 {
 ArtifactFactory::instance()->Remove(
 m_code);
 }
};

// SpecializedCreator class
template <class SPEC_ARTIFACT,
 class KEY, class ARTIFACT>
struct SpecializedCreator
 : public Creator< KEY, ARTIFACT>
{
 virtual ARTIFACT * Create() const {
 return new SPEC_ARTIFACT;
 }

 SpecializedCreator(KEY code)
 : Creator< KEY, ARTIFACT>(code) {}
};

// Inner ArtifactFactory class
template < class KEY, class ARTIFACT>
class InnerArtifactFactory
{
protected:
 std::map<KEY, Creator< KEY, ARTIFACT> *>
 m_pool;
public:
 // Adds a KEY / Creator pair
 void Add (KEY key,
 Creator<KEY, ARTIFACT> *creator) {
 m_pool[key] = creator;
 }

 // Removes a KEY / Creator pair
 void Remove (KEY key) {
 if (m_pool.find(key) != m_map.end())
 m_pool.erase(key);
 }

 // Constructs an ARTIFACT based on a KEY
 ARTIFACT * Create (KEY key) {
 if (m_pool.find(key) != m_pool.end())
 return m_pool[key]->Create();
 else return NULL;
 }
};

The ArtifactFactory class will become now a

singleton façade for the instantiation of
InnerArtifactFactory:

Example Parameters:

KEY = string
ARTIFACT = Product

Implementation:
// Factory implementation
typedef InnerArtifactFactory< string,
 Product> MyInnerFactory;

class ArtifactFactory

{
 // static member for myself (singleton)
 static ArtifactFactory m_myself;
 // InnerArtifactFactory instantiation
 MyInnerFactory m_InnerFactory;
public:
 static MyInnerFactory * Instance()
 { return &(m_myself.m_InnerFactory); }
};

Registration:
SpecializedCreator< ProductA,
 string, Product> a(“a”);
SpecializedCreator< ProductB,
 string, Product> b(“b”);
SpecializedCreator< ProductC,
 string, Product> c(“c”);

The InnerArtifactFactory object handles the
operations of registration, un-registration and
creation. The ArtifactFactory is a singleton object
that transfers the control to the InnerArtifactFactory
contained whenever its Instance method is invoked.
The same singleton Factory class can now contain
multiple InnerArtifactFactory instantiations,
parameterized differently. An application can use a
single Factory class, that instantiates
InnerArtifactFactory objects for all required artifact
base types and provides access methods to them.

 Most of the design patterns contained in the
GoF book can be parameterized in the same manner
described above for Pluggable Factory. Starting from
this idea, we created a template library of design
patterns, which will be presented in a future paper.

As demonstrated by the case study presented in
this section, design patterns have skeletons, which
are generic enough as to be automatically generated
or implemented using templates

4. ARCHITECTURE

A design pattern gives a language independent
solution to a particular problem. The implementation
of a design pattern at a given location and in a
specific programming language is developer’s
responsibility. Implementing a design pattern
requires usually experience. It is quite complicated
for inexperienced programmers to jump from a
pattern description to a particular implementation.

Our Design Pattern Generation Framework was
developed to address these requirements. It creates
design pattern instances for specific contexts by
customizing their skeleton, as presented in the
previous section. We named it Aluberi, after the
name of the remote supreme god of the Arawak
mythology, a Native American tribe from Guyana.
Some also considers Aluberi the creator or the
supreme spirit and he is distantly aloof.

It is worth mentioning that Aluberi is not the
first tool of this kind and certainly not the last.
Frameworks and tools addressing the same
requirements are described in [5, 11, and 12]. We
tried to learn as much as possible from their
experience in order to make our framework better.

Aluberi provides two possible ways of
generation for a design pattern: Light and Heavy.

The light generation will consist of an
instantiation of the template skeleton of the pattern,
contained by the pattern template library. The
amount of code generated will be minimal, but the
project in which the pattern instance will be used will
depend on the pattern template library. On the other
hand, the heavy generation will produce all the code
required for a specific context.

Figure 2. Aluberi’s Architecture

As shown in Figure 2, Aluberi uses a pattern

repository, which is shared by two different clients: a
Microsoft Visual Studio (VS) add-in able to generate
the pattern skeleton directly into a VS project and a
stand-alone application, able to display information
about each pattern, manage the pattern repository
and generate the patterns independent of the IDE.

Aluberi is able to generate code for multiple
languages, as long as the pattern repository contains
corresponding pattern skeleton files.

Each design pattern skeleton has a
correspondent file in the pattern repository for each
programming language. The pattern skeleton file

contains details of the code that will be generated for
each pattern, its customization parameters and hooks.
Also, the generated code contains comments
detailing about what remains to be done and is
implementation specific.

Adding a new pattern to the repository is a
simple task that can be done using the pattern editor
provided by the pattern management stand-alone
application included in our framework. Also, new
programming languages can be defined at user’s
discretion.

The skeleton is divided into sections and the
customization parameters are defined accordingly.
Each section will be generated once or multiple
times, depending on its parameters. In case a section
should be generated multiple times a list of values
should be provided for at least one of its parameters.

For example, in case of a Pluggable Factory the
registration is a repetitive section initialized with the
list of types that it can construct.

Aluberi provides the user interface necessary to
visualize, create and edit the brief descriptions of the
intent, motivation and applicability for each of the
patterns contained in the repository.

A pattern skeleton created on a computer can
be easily transferred to another, since it is
encapsulated in a file. The only operation required in
order to register a pattern file with application is to
copy it into the folder from which the application
reads the patterns.

5. CONCLUSIONS

Reusing software, tools, design, experience
accumulated in creating any software artifacts avoids
investing again and again effort in re-crating them or
in creating similar artifacts. Besides shortening the
time to market of various products this leaves to
designers and/or implementers more time and
freedom to concentrate on the creative part of their
work, adding more value to their products. Our paper
deals with design patterns, one of the techniques for
encapsulating experience in design and reusing it.

Based on the assumption that every pattern has
a skeleton, a tool can be created to generate
automatically the pattern skeletons or the patterns
inside patterns. Such a tool is described in the paper,
developed as part of a design pattern framework
named by the authors Aluberi. The architecture
consists in a pattern generation application, a Visual-

Studio add-in, a pattern repository and a language
specific library.

Two possible ways of generation for design
patterns are implemented: the light one will consists
only in instantiation of the pattern template classes
from the language specific library and the generated
code will be minimal, while the heavy generation
will produce all the code required for a specific
context, based on the pattern skeleton taken from the
repository.

Along with implementation details, the
advantages and flexibility of the implemented
framework are described: ability to generate code for
multiple languages, capability to easy add new
patterns to the repository, easiness in porting pattern
skeletons from one platform to another.

We consider Aluberi a valuable helper when
implementing industrial software applications using
design patterns that brings design pattern
implementations just one click away. It also induces
uniformity to the design pattern implementations,
allowing fast, easy and accurate design pattern
recognition from the code.

6. REFERENCES

[1] Christopher Alexander, “Notes on the Synthesis of
Form”, Harvard University Press, 1964.

[2] Christopher Alexander, S. Ishikawa, M. Silverstein, “A
Pattern Language”, Oxford University Press, 1977.

[3] Christopher Alexander, “The Timeless Way of
Building”, Oxford University Press, 1979.

[4] Erich Gamma, Richard Helm, Ralph Johnson, John
Vlissides, “Design Patterns – Elements of Reusable
Object-Oriented Software”, Addison-Wesley, 1995.

[5] F. J. Budinsky, M. A. Finnie. J. M. Vlissides, and P. S.
Yu, “Automatic Code Generation from Design Patterns”,
IBM Systems Journal, Object Technology, Volume 35,
Number 2, 1996.

[6] Kent Beck, Ron Crocker, James O. Coplien, Lutz
Dominick, John Vlissides, “Industrial Experience with
Design Patterns”, Proceedings of The 18th International
Conference on Software Engineering (ICSE-18), Berlin,
Germany, 1996.

[7] Ellen Agerbo, Aino Cornils, “How to preserve the
benefits of Design Patterns”, Proceedings of OOPSLA’98,
Vancouver, B.C., Canada, 1998.

[8] John Vlissides, “Pattern Hatching – Pluggable Factory,
Part I”, C++ Report, November – December 1998.

[9] John Vlissides, “Pattern Hatching – Pluggable Factory,
Part II”, C++ Report, February 1999.

[10] S. MacDonald, D. Szafron, J. Schaeffer, J. Anvik, S.
Bromling and K. Tan, “Generative Design Patterns”,
Proceedings of IEEE Automated Software Engineering
2002 (ASE2002), Edinburgh, United Kingdoms, September
2002.

[11] T.Tung Do, Manuel Kolp, T. T. Hang Hoang and
Alain Pirotte, “A Framework for Design Patterns in
TROPOS”, Proceedings of the 17th Brasilian Symposium
on Software Engineering (SBES’2003), Manaus,
Amazonas, Brasil, 2003.

[12] Somsak Phattarasukol and Daisy Sang, “Design
Pattern Integrated Tool”, Proceeding of OOPSLA’04,
Vancouver, B.C., Canada, October 24-28, 2004.

